How far pesticide contamination from agro-systems can affect adjacent protected forests?
Case study in Benin, West Africa
Abstract
Due to pest pressure, nowadays, conventional cotton farming necessitates the use of more and more pesticides. This study measured how far agrochemicals used in farming areas can pollute adjacent protected habitats. Experimental beehives were installed in farming areas, in buffer zone and in a forest (protected habitat) to monitor pollutants presence. Hives with bee colony were monthly weighted for 20 consecutive months to monitor beekeeping success year round. In parallel the food/flower resources estimated at each site, the dead bees continuously trapped per site to explain eventual fluctuation in beehive weight progress. Honey and dead bee were sampled for pesticide analysis to check if dead bees contain higher pesticide traces and thereby their numbers trend per site. Results show contamination of honey and bee from all sites. The food/flower resources availability followed the same trend as the beehives’ weight progression. We concluded of general contamination of bees and honey from farming areas to protected habitats (forest). However, these findings don’t have a clear impact on beekeeping and subsequent pollination services. But, the food resources availability appeared to most affect the beekeeping success.
References
Betayene D. 2008. Débuter en apiculture. Centre pour l’Environnement et le Développement (CED), Yaoundé-Cameroun. 44 p. www.cedcameroun.org.
Bradley J, Cardinale J, Duffy E, Gonzalez A, Hooper D, Perrings C, Venail P, Narwani A, Mace G, Tilman D, Wardle D, Kinzig A, Daily G, Loreau M, Grace J, Larigauderie A, Srivastava D, Naeem S. 2012. Biodiversity loss andits impact on humanity. Nature 486, 59-67; DOI: 10.1038/nature11148.
Bruner AG, Gullison RE, Rice RE, da Fonseca GAB. 2001. Effectiveness of Parks in Protecting Tropical Biodiversity. Science. 291(5501): 125-128.
Bueno MR, da Cunha JAR. 2020. Environmental risk for aquatic and terrestrial organisms associated with drift from pesticides used in soybean crops. Annals of the Brazilian Academy of Sciences 92: e20181245 DOI 10.1590/0001-3765202020181245
CIRAD-TERA, CIEPAC, FIEF, CEBEDES. 1998. Étude de faisabilité de la phase de consolidation du programme de gestion des ressources naturelles (PGRN). Cotonou: MDR/CIRAD.
Djossa BA, Toni HC, Adekanmbi ID, Tognon FK, Sinsin BA. 2015. Do flying foxes limit flower abortion in African baobab (Adansonia digitata)? Case study in Benin, West Africa. Fruits. 70(5): 281-287.
Ferrigno S, Guadagnini R, Tyrell K. 2017. Is cotton conquering its chemical addiction? A review of pesticide use in global cotton production. 76p.
Fischer J, Lindenmayer DB, Manning AD. 2006. Biodiversity, ecosystem function, and resilience: ten guiding principles for commodity production landscapes. Frontiers in Ecology and the Environment. 4: 80-86.
Gianessi LP. 2010. Pesticide use and biodiversity conservation on farms. Crop Protection Research Institute. Crop life Foundation Washington, DC.
Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, Schwan H. 2017. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12(10): e0185809. https://doi.org/10.1371/journal.pone.0185809
Hardstone MC, Scott JG. 2010. Is Apis mellifera more sensitive to insecticides than other insects? Pest Management Science 66: 1171-1180. doi: 10.1002/ps.2001
Houndagba CJ, Tente ABH, Guedou R. 2007. Dynamique des forêts classées dans le cours moyen de l’Ouémé au Bénin, Kétou, Dogo et Ouémé-Boukou, in Fournier A, Sinsin B, Mensah GA (dir.). 2007, Quelles aires protégées pour l’Afrique de l’Ouest?, éditions IRD, DOI : 10.4000/books.irdeditions.8001, p. 369-380.
Köhler H-R, Triebskorn R. 2013. Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond? Science 16; 341(6147): 759-65. DOI: 10.1126/science.1237591
Mone S, Kusha KM, Jathanna D, Ali M, Goel A. 2014. Comparison of insect biodiversity between organic and conventional plantations in Kodagu, Karnataka, Indian Journal of Threatened Taxa 6(9): 6186-6194.
Pashte VV, Patil CS. 2017. Impact of different insecticides on the activity of bees on sunflower. Research on Crops 18(1): 153-156; DOI : 10.5958/2348- 7542.2017.00026.2
Pavlov DS, Bukvareva EN. 2007. Biodiversity and Life Support of Humankind. In Vestnik Rossiiskoi Akademii Nauk, 2007, 77(11): 974-986.
Sgolastra F, Medrzycki P, Bortolloti L, Renzi MT, Tosi S, Bogo G, Teper D, Porrini C, Molowny-Horas R, Bosch J. 2016. Synergistic mortality between a neonicotinoid insecticide and ergosterol - biosynthesis-inhibiting fungicide in three bee species. Pest Management Science 73 (6): 1236-1243. https://doi.org/10.1002/ps.4449.
Szigeti V, K?rösi Á, Harnos A, Nagy J, Kis J. 2016. Comparing two methods for estimating floral resource availability for insect pollinators in semi-natural habitats, Annales de la Société entomologique de France (N.S.), 52: 5, 289-299, DOI: 10.1080/00379271.2016.1261003
Toni HC, Djossa BA, Teka OS, Yédomonhan H. 2018. Les services de pollinisation des abeilles sauvages, la qualité et le rendement en fruits de la tomate (Lycopersicon esculentum Mill.) dans la commune de Kétou au sud Bénin. Revue Ivoirienne des Sciences et Technologie, 32: 239-258.
Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, Vandermeer J, Whitbread A. 2012. Global food security, biodiversity conservation and the future of agricultural intensifcation. Biological Conservation 151(1): 53-59.
Yédomonhan H. 2009. Plantes mellifères et potentialités de production de miel en zones guinéenne et soudano-guinéenne au Bénin. Thèse de doctorat, Université d'Abomey-Calavi. http://www.uac.bj
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Sciences and Technologies for Substainable Agriculture
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
COPYRIGTH CONSEIL SCIENTIFIQUE UNA 2021